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Abstract

I construct a new nationwide dataset to measure the stringency of residential zoning in the

U.S. and use it to examine the effects of zoning on housing prices and demographic sorting. First,

I develop and apply a structural break detection algorithm to infer minimum lot size regulations

from property tax records. These minimum lot size estimates cover 16,217 local jurisdictions and

are geographically detailed, capturing both across-jurisdiction and within-jurisdiction variations

in zoning stringency. I then use this constructed data and a spatial discontinuity design at

municipality borders to evaluate the impact of the regulations in housing markets. I find that a

larger minimum lot size increases home prices and rents. For example, doubling the minimum

lot size increases sales prices by 10 percent and rents by 6 percent. I also find that neighborhoods

with restrictive zoning disproportionately attract high-income white homeowners, intensifying

residential segregation.
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1 Introduction

Local governments in the U.S. regulate housing supply through residential zoning, which restricts

the quantity and type of housing constructed. A large and growing body of empirical literature

finds that local zoning laws increase housing prices and intensify segregation (Glaeser and Ward,

2009; Kok et al., 2014; Trounstine, 2020). Accordingly, recent shortages of affordable housing

have triggered nationwide debates on the relaxation of local zoning laws.1 However, existing

research is based on either case studies or surveys with limited geographic coverage, and there is

a dearth of comprehensive evidence of the stringency of zoning laws and their effects on housing

markets across the nation.

Zoning data is often maintained by local zoning authorities, and there are no nationwide

datasets. Hence, existing empirical studies on zoning laws rely on land use survey data (Turner

et al., 2014; Trounstine, 2020; Gyourko and Krimmel, 2021, for example) or manual collection

of local zoning data (Bronin, 2021; Sahn, 2021, for example). These approaches are very costly

and almost implausible at the national level, with thirty thousand local zoning authorities. For

example, Wharton Land Use Survey, the largest and most commonly used data source in the

literature, only includes 2,450 municipalities among more than two thousand of them across

the nation (Gyourko et al., 2021). As such, existing empirical studies of zoning laws have sparse

geographic coverage.

This paper addresses this gap in the literature by providing the first nationwide examination

of minimum lot size regulations, one of the most common types of density restrictions in

residential zoning. I construct a new geographically-detailed dataset on minimum lot sizes

covering 52 million single-family homes and 16,217 municipalities in 825 Core-Based Statistical

Areas in the United States, which covers more than 60% of households. Using this data and

adopting a spatial discontinuity design, I analyze the current restrictiveness of the regulations

and their impact on housing prices and residential sorting.

In the first part of the paper, I develop and apply an algorithm that detects minimum lot sizes

1. Some states have already passed statewide relaxation of zoning, including Oregon in 2019 (House Bill 2001) and
California in 2021 (Senate Bill 9). In 2021, the federal government included a proposal in the infrastructure plan to
provide incentives to local communities to eliminate local exclusionary zoning practices.
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from observed building characteristics in property tax records. The key idea is that minimum

lot size restrictions make it substantially more difficult to build a house on a lot smaller than

the cutoff.2 If the restriction is a meaningful constraint, then lot sizes of new constructions will

bunch right at the cutoff. I thus detect the point of bunching in the empirical distribution of

newly constructed lot sizes using a structural break detection algorithm and define it as the

minimum lot size.3 I implement this approach at the zoning district level, which I observe in

property tax records in some municipalities and proxy with Census block groups otherwise. I

then validate the minimum lot size estimates by comparing them with MAPC Zoning Atlas. I

find that the estimated minimum lot sizes reflect the current minimum lot sizes very precisely,

with a median error of 11.7%.

The constructed minimum lot size data measures the stringency of housing density restric-

tions at zoning district levels in 16,217 municipalities, covering almost 80% of local governments

in Core-Based Statistical Areas.4 This is much more geographically granular, capturing within-

municipality variations in zoning, and has broader coverage than any other existing zoning

datasets, capturing across-municipality variations.5 I use the constructed dataset to provide an

empirical description of the current state of residential zoning across the U.S. First, minimum

lot size restrictions are generally stringent, with a mean of 16,000 square feet. Second, 75% of

all municipalities impose minimum lot sizes of 1 acre or larger in at least one district in their

jurisdiction. Finally, about 15% of homes constructed since 1940 bunch within 5% of minimum

lot sizes. The high bunching rate suggests that the minimum lot size restriction is a binding

constraint in lot size decisions.

In the second part of the paper, I estimate the effects of minimum lot size restrictions on

home prices and rents by using a boundary discontinuity design at municipality borders. To do

2. Under perfect compliance, minimum lot size would ban construction on a smaller lot than the regulated size.
In practice, however, some municipalities allow zoning variances to circumvent existing zoning laws, although they
are often an arduous process.

3. The algorithm takes a similar approach to OLS-based structural break detection in Andrews (1993) and Zeileis
(2005).

4. To define local municipalities with zoning authority, I construct a map of about 32,000 functioning local
governments in the U.S. based on the 2010 Census Guide to State and Local Census Geography.

5. Most land use survey data is at the municipality level covering at most a couple of thousand municipalities.
The largest manual compilation of local zoning codebooks is Connecticut Zoning Atlas, which covers 2,260 zoning
districts, and there are ongoing efforts to build similar statewide datasets.
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so, I compile housing market data from CoreLogic property tax history, CoreLogic deed records,

and CoreLogic Multiple Listings Service data and merge the deed data with Home Mortgage

Disclosure Act (HMDA) data. This rich data allows me to study the near universe of single-

family homes, observing their sales records, rental listings, and homeowner demographics

at the transaction level. I adopt a boundary discontinuity design at municipal borders and

control for pre-zoning neighborhood characteristics collected from 1940 Full-Count Census

data and tax records to address the endogeneity concern in zoning. The controls include the

population, demographic compositions, homeownership rate, home values, and rents in 1940. I

also control whether the community was developed during the postwar suburbanization, during

which zoning laws were most actively adopted, proxied by its existence in the geocoded 1940

Full-Count Census. Finally, I show that my empirical findings are robust to the inclusion of

municipality-by-school district fixed effects.

Baseline price effect estimates from the municipal border analysis indicate that doubling

the minimum lot size increases sales prices of a home by 10 percent and rents by 6 percent. The

price premium of stringent zoning may arise from the following mechanisms. First, a larger

minimum lot size requires homes to be bigger, and therefore, housing becomes more expensive

due to affected building characteristics. I call this the direct effect. Second, zoning affects

neighborhood characteristics and, thus, housing prices. For example, stringent zoning may

decrease neighborhood congestion, increase the local tax collection, and change neighborhood

demographics. I call this the neighborhood effect. I find that 84 percent of the price effect and

66 percent of the rent effect are attributed to the direct effect and the rest to the neighborhood

effect. The statistically significant and positive neighborhood effect indicates that restrictive

zoning is positively priced in the markets overall.

Additionally, I analyze how local zoning regulations affect demographic sorting. I repeat

the border analysis with homeowner race, ethnicity, and income from CoreLogic-HMDA data

as outcome variables. I find that doubling the minimum lot size increases the probability of

homeowners being non-Hispanic white by 2.3 percentage points and homeowners’ income at

mortgage applications by 9.5 percent. That is, zoning laws play a substantial role in shifting

neighborhood homeowner characteristics.
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This paper contributes to several bodies of literature. First, this paper contributes to the

literature on measuring the stringency of zoning laws. One popular data collection method

is to conduct surveys. Works that use survey data either focus on individual states such as

California (Quigley et al., 2008; Jackson, 2018; Mawhorter and Reid, 2018), or use data that

surveys small numbers of jurisdictions across the United States, such as the Wharton Land

Use Survey (Gyourko et al., 2008; Gyourko et al., 2021) or the Brookings Survey (Pendall et al.,

2006), which respectively surveyed 2,450 and 1,844 jurisdictions. Another way to measure the

stringency of land use regulations is to manually collect and aggregate local zoning ordinances.

Notably, MAPC Zoning Atlas (2020), Menendian et al. (2020), and Bronin (2021) each built zoning

datasets respectively covering 101 jurisdictions in Greater Boston, 100 jurisdictions in the Bay

Area, and 180 jurisdictions in Connecticut. Finally, this paper is most closely related to a handful

of studies developing a data-driven approach to compile or infer local zoning laws. Zabel and

Dalton (2011) use structural break detection to infer changes in minimum lot size regulations in

the greater Boston area. Nechamkin and MacDonald (2019) apply a random forest algorithm to

predict zoning codes in Washington D.C. Mleczko and Desmond (2023) apply natural language

processing to process local zoning codes in 2639 municipalities. Cui (2023) develops a structural

break detection algorithm to detect the timing of the adoption of zoning laws. In comparison,

I focus on inferring minimum lot sizes at the zoning district level to construct a nationwide

dataset with unique geographic coverage and details.

Second, this paper contributes to the literature studying the impact of land use regulations

on housing markets. Glaeser and Gyourko (2002), Glaeser and Ward (2009), and Kok et al. (2014)

show the positive association between stricter regulations and higher housing prices. Other

papers study the positive association of stricter regulations with less land development (Wu

and Cho, 2007), higher land prices (Gyourko and Krimmel, 2021), loss in economic output

(Hsieh and Moretti, 2019), and welfare loss (Brueckner and Sridhar, 2012; Albouy and Ehrlich,

2018). This paper is especially related to works that use a boundary discontinuity design to

address the endogeneity of land use regulations (Kahn et al., 2010; Turner et al., 2014; Kulka,

2019; Anagol et al., 2021; Resseger, 2022; Kulka et al., 2023). I contribute to this literature by

compiling a nationwide map of local governments to apply a boundary discontinuity design at

municipality borders to estimate the impacts of minimum lot size regulations. Taking advantage
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of the comprehensiveness of the zoning data, I also show that my empirical results are robust to

the inclusion of municipality-by-school district fixed effects.

Finally, this paper contributes to the literature on the relationship between density restric-

tions in residential zoning and neighborhood demographics (Rothwell and Massey, 2009; Troun-

stine, 2020; Freemark, 2023). This paper estimates the extent to which neighborhood demograph-

ics, including race and income, are shifted by zoning laws using transaction-level homeowner

demographics from HMDA. Also, I embed the spatial discontinuity design to address the endo-

geneity of zoning.

The remainder of the paper is organized as follows. Section 2 describes the algorithm that

estimates minimum lot areas from property characteristics data and characterizes the current

state of zoning from the constructed dataset. In Section 3, I conduct municipal border analyses

on housing prices and demographic sorting. Section 4 concludes.

2 New Nationwide Dataset of Minimum Lot Size Restrictions

Existing zoning datasets mostly rely on survey methods or manual compilation of local zoning

laws, but they have several limitations. First, they have narrow and/or granular coverage of

jurisdictions.6 Second, land use surveys omit details of zoning ordinances, making them inad-

equate for studying specific zoning reforms.7 Finally, land use surveys often suffer from low

response rates and measurement errors (Mleczko and Desmond, 2023). These limitations in

zoning datasets have been the biggest challenge in the growing empirical literature on zoning,

especially when researchers aim to study a broad geographic region.

To overcome this challenge, I develop a scalable algorithm to detect zoning regulations

6. Data scarcity is especially relevant when data is manually collected; manual compilation of local zoning laws is
very expensive and implausible at the national level, as the United States has over 30,000 zoning jurisdictions. For
instance, Bronin (2021) assembles zoning data in 180 jurisdictions in Connecticut, taking more than four months
with 20 research assistants. Some recent works, such as Mleczko and Desmond (2023) and Bartik et al. (2023),
develop natural language processing methods to collect and clean zoning details more efficiently.

7. For example, the Density Restriction Index (DRI) in the Wharton Residential Land Use Regulation Index
indicates whether a community has any minimum lot size requirement and, if it does, whether the largest minimum
lot size is smaller than 0.5 acres, between 0.5 and 1 acre, 1 to 2 acres, or larger than 2 acres. As such, it is common to
only report the "strictest" or the "most typical" regulation levels in intervals.
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from observed property characteristics to construct a nationwide dataset on neighborhood-

level stringency of residential zoning. In particular, I estimate minimum lot sizes applied to

single-family homes by detecting structural breaks in constructed lot sizes by zoning district

and Census Block Group levels using CoreLogic Tax Assessor data. This geographically-detailed

zoning dataset covers 52 million single-family homes in 16,217 municipalities in 825 CBSAs

across the United States.8 Finally, I validate these estimates to MAPC Zoning Atlas with publicly

available information on minimum lot size regulations in 105 municipalities in California.

Throughout this paper, I focus on minimum lot size regulation as it is the most important

dimension of zoning laws in single-family home construction for the following reasons. First,

minimum lot size regulation is the most common type of zoning law. For instance, 91% of

jurisdictions in the Wharton Land Use Regulatory Index survey and 96% in the Terner Center

California Land Use Survey reply that they impose minimum lot size restrictions. Second,

minimum lot size is one of the most distortionary zoning laws in single-family construction. To

illustrate, I compute the bunching rate of single-family home construction around minimum lot

sizes and maximum floor-area ratio, another type of zoning law often studied in the literature. In

CoreLogic data merged with MAPC Zoning Atlas, 18 percent of single-family construction after

1940 bunch at minimum lot sizes while only 5 percent of the construction bunch at maximum

floor-area ratios. As such, although residential zoning regulates multiple dimensions of building

characteristics, minimum lot size regulation is one of its most critical components, especially in

single-family home construction.

2.1 Constructing the Minimum Lot Size Dataset

In this subsection, I describe the procedure of the minimum lot size data construction in greater

detail. I begin by describing the key data input, property tax records from CoreLogic Tax Assessor

data. Then I explain how I use the geolocation, construction year, and lot size data of single-

family home construction to apply a structural break detection algorithm to estimate minimum

lot size regulations.

8. To compare, there are 86 million single-family homes in CBSAs according to 2020 American Community Survey.
Note that the minimum lot size data exclude single-family homes without functioning local government entities. As
such, the minimum lot size data covers at least 60% of single-family homes subject to local zoning laws.
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Data Used in Minimum Lot Size Estimation

The primary dataset I use for zoning data construction is CoreLogic Tax Assessor data. CoreL-

ogic tax data includes property tax records from 2009 to 2019 for residential and non-residential

properties.9 Each tax record includes property characteristics, such as building type, lot area,

number of rooms, and construction year, as well as tax-assessed values and tax amounts in each

tax year. I collect and geocode single-family home tax records to focus on min lot size restrictions

applied to single-family homes.

I merge single-family home tax records with Census County Subdivision maps and Census

Place maps. I use the geographic information to group the parcels into municipalities with

functioning local governments that could set zoning laws, according to 2010 Census Guide to

State and Local Census Geography. See Appendix Table A1 for more detail about the definition of

municipalities. As a result, I obtain the property tax records of 67 million single-family homes

that were constructed after 1940 within 830 Core-Based Statistical Areas.10

Construct Neighborhood × Construction Period Grids

Local governments divide their land into zoning districts and set zoning laws in each district.

For example, they tend to apply tighter zoning restrictions in residential-only neighborhoods

in the periphery compared to mixed-use neighborhoods in city centers.11 As such, zoning laws

vary across zoning districts, even within a municipality. Hence, the stringency of zoning laws

should be measured at the zoning district level.

To proxy zoning districts to capture the within-municipality variation in zoning, I partly rely

on zoning district information in CoreLogic tax data. This zoning district data is not always

clean and has limited coverage.12 Therefore, in the municipalities where the zoning district

information is missing, I use Census block groups to define a neighborhood. I choose the

9. CoreLogic collects this data from local government entities responsible for levying property taxes, which are
typically county governments.

10. I exclude observations that do not belong to any Core-Based Statistical Areas to exclude rural areas throughout
the paper.

11. For example, many cities have R1 district and R2 districts, where both are residential districts, with R2 allowing
denser housing development. It is common to have multiple residential districts within a municipality.

12. 46 % of single-family home parcels in the sample have CoreLogic zoning data field filled. When the data field is
filled, it has an unclean zoning district name, for example, R1, R-1, or R2.
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Census block group for the spatial unit of interest because its boundary partly reflects local legal

boundaries, and its map is available nationwide in a shapefile format.

Since existing structures would be grandfathered in when zoning laws are newly adopted

or changed, effective min lot size restrictions may vary by construction years. Unfortunately, I

do not observe the year of adoption of zoning laws by the municipality, and this information is

extremely hard to collect (Cui, 2023). For my baseline min lot size estimates, therefore, I use all

single-family home construction built after 1940, given that most municipalities first adopted

local zoning in the mid-to-late 1900s.

Minimum Lot Size Detection

New construction must comply with minimum lot size regulations unless they meet excep-

tion criteria or apply for zoning variances or rezoning. Such non-compliance is expensive and

uncommon. Therefore, new construction that aims for small lot sizes is forced to construct at the

minimum lot size or not construct at all. This creates a discontinuity or kink in the distribution

of residential lots at the minimum lot size. Figure 1 illustrates such a structural break in observed

lot sizes in CoreLogic tax data merged with MAPC Zoning Atlas. It depicts that single-family

homes constructed after 1940 substantially bunch at minimum lot sizes, and the structural break

in the distribution function is evident at the lot size requirement.

I detect kinks in the distribution of lot sizes motivated by the structural break detection

literature (Andrews, 1993; Zeileis, 2005) and define these breakpoints as the minimum lot sizes.

Specifically, I solve the following minimization problem:

min
𝑥ℎ

[
min

𝐹ℎ,1,𝐹ℎ,2∈F

1
𝑁ℎ

∑︁
𝑥𝑖 ,ℎ

(𝐹ℎ (𝑥𝑖 ,ℎ) − 𝐹ℎ,1(𝑥𝑖 ,ℎ)1(𝑥𝑖 ,ℎ < 𝑥ℎ) − 𝐹ℎ,2(𝑥𝑖 ,ℎ)1(𝑥𝑖 ,ℎ ≥ 𝑥ℎ))2
]

where ℎ is a neighborhood (either zoning district or Census Block Group), 𝑖 is a single-family

home, 𝑥𝑖 ,ℎ ’s are the observed lot sizes, 𝑁ℎ is the # of single-family homes in the neighborhood,

and 𝐹ℎ (·) is the empirical distribution of single-family home lot sizes in the neighborhood.

𝐹ℎ,1 and 𝐹ℎ,2 are the (estimated) cumulative distribution functions for single-family homes

smaller than the minimum lot size and for single-family homes bigger than or equal to the

minimum lot size, respectively. 𝐹ℎ,1 and 𝐹ℎ,2 are chosen from a family of smooth functions
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(F ), which I set to be the family of seventh-order polynomials. I identify the value 𝑥ℎ that

minimizes the sum of squared residuals with a single breakpoint at each neighborhood with

more than 50 observed single-family home lot sizes. I use this estimate as my minimum lot size

estimate. To illustrate, Figure 2 depicts the actual minimum lot sizes and detected structural

breaks (estimated minimum lot sizes) in four example zoning districts. I apply the structural

break detection algorithm nationwide.

2.2 Validation of Minimum Lot Size Estimates

In this subsection, I validate the minimum lot size estimates using MAPC Zoning Atlas. MAPC

Zoning Atlas compiles zoning information in 101 cities and towns of Metropolitan Boston and

includes minimum lot size data in each zoning district. It is one of the few public data sets

that include actual minimum lot sizes for multiple municipalities.13 I merge my parcel-level

minimum lot size estimates with the Zoning Atlas map and compare the estimates (estimated

MLS) with the minimum lot sizes provided in MAPC (actual MLS).14 The median error rate

(= estimated MLS - actual MLS
actual MLS ) is 11.7%, and the correlation between estimated MLS and actual MLS

in the validation data is 0.81. Panel A of Table 1 reports further statistics of the error rates in the

validation dataset.

To provide benchmarks to interpret the error rates quantitatively, I report error rates when

minimum lot sizes were proxied by simpler statistics of observed lot sizes. For example, if there

were no zoning variances and no changes in minimum lot sizes since 1940, then simply taking

the minimum of constructed lot sizes would capture the regulation precisely. Table 2 reports

the benchmark error rates when minimum lot sizes were proxied by the 1st percentile or 10th

percentile of lot sizes of single-family homes constructed since 1940. The median error rate is

73.8% and 42.1%, respectively, far larger than the 11.7% median error in my estimates. Even

13. Most other existing zoning datasets provide limited and censored information on minimum lot sizes. For
example, similar to Wharton Residential Land Use Regulation Index reporting the largest minimum lot sizes in each
municipality in categories, Connecticut Zoning Atlas includes information on whether minimum lot size regulation
exists, and if it does, whether it is smaller than 0.47 acre, between 0.47 and 0.91 acre, between 0.92 and 1.84 acres, or
larger than 1.84 acres.

14. I use all past 11 years of single-family home tax records as of 2019 and merge estimated MLS based on parcel
location. All statistics, for example, percentiles, are weighted by the number of property tax records.

10



the 1st decline error appears to be 50.1% and 14.3%, respectively, indicating that these simple

proxies are not valid in many locations.

Additionally, I compare Wharton Residential Land Use Regulatory Index data with MAPC

Zoning Atlas data to illustrate discrepancies in existing zoning data sets. Wharton Land Use

Regulatory Index data is the most popular measure of zoning stringency, and the data is collected

by surveying local municipalities. The Density Restriction Index (DRI) in the survey reflects

whether the community has any minimum lot size regulations, and if it does, whether their

largest minimum lot size is no larger than 0.5 acres, between 0.5 and 1 acres, 1 and 2 acres,

or more than 2 acres. I link the 2018 Wharton survey with MAPC Zoning Atlas and compare

minimum lot size information in the two datasets.

Table 3 reports the comparison between Wharton DRI and the largest minimum lot sizes

in MAPC Zoning Atlas in 30 municipalities that appear in both datasets. I find that only 17 of

the 30 municipalities have matching minimum lot size information in the Wharton survey and

MAPC Zoning Atlas, while 6 of them underreported their largest minimum lot sizes, and the rest

7 municipalities overreported their largest minimum lot sizes. This discrepancy in the zoning

data is potentially due to survey measurement errors (Mleczko and Desmond, 2023) or mismatch

between the study time periods.

Wharton land use survey has a strong advantage in characterizing the restrictiveness of

overall local regulatory environments, including administrative delays and implicit hurdles

in new residential development. In comparison, my zoning data offers more geographically

granular and precise measures of density restriction but only captures minimum lot sizes applied

to single-family home construction.

2.3 Descriptive Statistics: The State of Local Zoning Laws in the United States

The constructed minimum lot size data allows me to provide the first nationwide descriptions of

the regulations across the United States. I document the following three facts that characterize

the current stringency and restrictiveness of zoning laws.

First, I find that minimum lot size restrictions are stringent overall: the average single-family
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home is subject to 16,000 square feet min lot size, and the median is subject to 9,200 square

feet.15 About half of residential land in the U.S. is subject to min lot size restrictions of 19,000

square feet or larger. See Table A2 and A3 for detailed summary statistics by state.

Second, most municipalities impose extremely stringent minimum lot size regulations on at

least some part of their land. For example, 74.6 % of all municipalities have at least one zoning

district with 1 acre or larger minimum lot sizes. 44.0 % of all municipalities have at least one

zoning district with 2 acres or larger minimum lot sizes.

Third, min lot size regulations distort housing characteristics: about 15.4% of single-family

homes built after 1940 are bunching within 5% of regulated lot sizes. This bunching rate proxies

the restrictiveness of min lot size regulations. Figure 3 depicts the stringency, measured by the

median min lot size, and the restrictiveness, measured by the bunching rate, by state. New Jersey

has the most restrictive zoning with a bunching rate of 23%, followed by Florida and California

with 22% and 19% bunching, respectively.

3 Estimating the Effects of Zoning in Housing Markets

Minimum lot size regulations are a type of density restriction in residential zoning. They restrict

housing supply, shape neighborhoods, and, in turn, affect housing prices. In this section,

I estimate the effects of minimum lot size regulations on home sales prices and rents and

investigate the mechanisms of the price effects using the novel zoning dataset. In addition, I

estimate their effects on residential sorting on the dimensions of homeowner race and income. I

start by explaining underlying assumptions in the boundary discontinuity design and datasets

used in the border analysis. I then discuss the results.

15. The mean and median are calculated by weighting min lot size estimates by the number of parcels in each
district.
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3.1 Empirical Strategy

A major challenge to understanding the causal effects of zoning on housing market outcomes is

that the stringency of zoning regulations may be correlated with unobserved location amenities.

For example, suburban places with higher-quality residential environments may set stricter

zoning to prevent low-income households from entering. In contrast, populated cities with

well-developed infrastructures may allow denser development with relaxed zoning. As such,

minimum lot sizes may be positively (in the former case) or negatively (in the latter case)

correlated with location amenities. As location amenities affect housing market outcomes, such

as prices and demographics, the OLS coefficients of minimum lot size on these outcomes may

be biased.

To address this concern, I adopt a boundary discontinuity design developed by Black (1999).

In my setting, I compare housing prices at municipality borders, such as city, town, and township

borders, where the stringency of zoning varies. Additionally, I control for pre-zoning neighbor-

hood attributes, which I construct by geocoding the 1940 full-count Census and aggregating

at the border region levels. Finally, I include municipality (city, town, township, and county

with functioning local governments)-by-school district fixed effects to address the concern

about potential differences in local services, such as trash collection and snow removal, and

school district quality that may be correlated with zoning stringency. This is possible due to the

granularity of minimum lot size estimates with variations within municipalities in addition to

across-municipality variations. The key identification assumption is that unobserved amenities

are as good as random conditional on observable characteristics within some pre-specified small

region around the border.

3.2 Data Used in the Border Analysis

I compile the following datasets to construct transaction-level home sales prices, rents, and

homeowner demographics, as well as neighborhood characteristics. I use them for the municipal

border analysis in addition to the minimum lot size dataset I describe in Section 2.
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Corelogic Deed-Home Mortgage Disclosure Act Data

CoreLogic deed data, available since the 1980s, includes deed and mortgage transactions.

I collect sale transactions of single-family homes from the deed data from 2000 to 2018 and

merge property characteristics from CoreLogic Tax Assessor data, described in 2, including lot

size, building square footage, (effective) construction year, number of bedrooms, and number

of bathrooms. I then link them with Home Mortgage Disclosure Act (HMDA) loan application

register data, following the approach of Bayer et al. (2007), which involves matching Census

tract, mortgage year, and lender name.16 The match rate is 65.7% for CoreLogic deed records of

residential properties with mortgage information.17 The resulting dataset provides transaction-

level prices and demographics (race, ethnicity, and income) of mortgage applicants of single-

family home sales.

I geocode CoreLogic-HMDA data and merge it with Census County Subdivision maps and

Census Place maps to identify single-family homes in municipality borders.18 I use 0.1 km (0.06

miles) to 1.0 km (0.6 miles) to define border regions and choose 0.5km as a baseline. Standard

choices of the border distance in spatial boundary discontinuity design range from 0.24km (0.15

miles) to 0.56km (0.35 miles) (Bayer et al., 2007; Turner et al., 2014). I restrict my analysis to

within-county municipality borders with at least 25 single-family home parcels on both sides of

borders.

For price analyses, I use CoreLogic deed data before merging HMDA to include cash sales

and unmatched transactions. The sample consists of 10.6 million transactions in 10,315 border

regions. See Panel A of Table 4 for sample statistics. For demographics analyses, I use CoreLogic-

HMDA data where I observe mortgage lenders’ race and income. The sample consists of 4.6

million transactions in 9,594 border regions. See Panel B of Table 4 for sample statistics.

16. Other papers that have implemented this merging procedure include Avenancio-Leon and Howard (2019) and
Diamond and McQuade (2019).

17. This match rate is comparable to other papers that use the same approach. For example, Bayer et al. (2007) have
a match rate of 60% in the Bay Area. Bayer et al. (2007) also illustrate the representativeness of the matched sample.

18. See Appendix Table A1 for more detail about the definition of municipality boundaries.
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Corelogic Multiple Listings Service Data

CoreLogic listings data includes sale and rental listings collected from 154 multiple listings

services (MLS).19 Each MLS maintains its own database of property listings and often covers

specific local markets. CoreLogic aggregates these databases into a single dataset. The dataset

includes the list date and price and, if the listing is closed, the closing date and price. Since I

already have sale information from CoreLogic deed data, I focus on rental listings in the MLS

data and use closing prices of single-family home rental listings in the analysis. Although rental

listings count for only small part of the data, I obtain 300 thousand geocoded single-family home

rental listings with closing prices in 3,023 border regions for analysis. See Panel C of Table 4 for

sample statistics.

1940 Census Full-Count Data

The set of pre-zoning neighborhood characteristics come from 1940 Ancestry.com and

IPUMS complete-count Census restricted data (Ruggles et al., 2017). I geocode the street

addresses of individual-level 1940 Census data and merge them with the 2019 municipality

boundaries to obtain historical neighborhood characteristics of border regions. Note that this

neighborhood data is sparse because most of the municipalities were created during postwar

suburbanization. Thus, I observe whether the municipality existed as of 1940 and, if it did,

the neighborhood characteristics of each border region. The characteristics include the to-

tal population, household size/structure, mobility, demographics such as race and income,

homeownership, average home value, and average rent. I use these pre-zoning neighborhood

characteristics as control variables.

2019 School District Boundaries

I merge the geocoded CoreLogic deed, deed-HMDA, and MLS datasets with 2019 school

district boundaries. By doing so, I observe the unified school district, elementary school district,

and secondary school district that each transacted home was located in. I construct school

district fixed effects for each pair of a unified school district, elementary school district, and

secondary school district and include them as controls.

19. There are 597 multiple listing services as of 2020, according to the Real Estate Standards Organization.
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3.3 Effects on Home Prices and Rents

My baseline transaction-level regressions take the form

log𝑝𝑖𝑡 = 𝛽𝑀𝐿𝑆 log𝑀𝐿𝑆𝑖 + 𝑋𝑖 𝛽𝑋 + 𝜆𝑏 (𝑖 ) + 𝜆𝑡 + 𝜆𝑚×𝑠 + 𝜀𝑖𝑏𝑚𝑡 , (1)

where 𝑖 denotes a single-family home transaction and 𝑡 is the housing market, defined as county-

by-transaction year. log𝑝 is log of sales price or rent, and log𝑀𝐿𝑆𝑖 is log of minimum lot size

(MLS) applied to the single-family home. In this specification, I assume the treatment effects of

minimum lot size restrictions are linear in log of MLS. In Appendix Figure A1, I present alternative

binscatter regressions, which show consistent results. 𝑋𝑖 is a set of historic neighborhood-level

controls. See Appendix Table A4 for the full list of control variables. 𝜆𝑏 is border region fixed

effects, defined by an unordered pair of municipalities, 𝜆𝑡 is county × transaction year fixed

effects, and 𝜆𝑚×𝑠 is local government (city, town, township, or county) × school district fixed

effects. The inclusion of border region fixed effects implements the spatial discontinuity design.

𝛽𝑀𝐿𝑆 in Equation 1 captures the overall long-term price effects of MLS. Note that price

outcomes here are for a single-family home instead of per square foot. This way, 𝛽𝑀𝐿𝑆 captures

direct effect; each housing unit is more expensive as it is required to be bigger. In addition, 𝛽𝑀𝐿𝑆

includes neighborhood effects; restrictive zoning shapes neighborhood amenities that may

be (either positively or negatively) valued by households. Neighborhood effects may include

effects on neighborhood ambiance and demographics. However, when including school district

and municipality fixed effects, 𝛽𝑀𝐿𝑆 does not capture some of the municipality-wide effects.

For example, zoning may affect local tax bases or peer demographics of school districts, but

these channels are not reflected in the coefficient estimates. Finally, 𝛽𝑀𝐿𝑆 does not include the

supply effect; restrictive zoning limits housing supply, increasing housing prices. This is because

the border discontinuity design is based on the assumption that neighborhoods on both sides

of borders are comparable, controlling for observables. Under the assumption, local housing

supply conditions should affect both sides of the borders. Therefore, the supply effect is captured

by fixed effects instead of being reflected on 𝛽𝑀𝐿𝑆 in my empirical setting.

Table 5 reports the coefficient estimates with the baseline border distance (0.5km). The full
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specification result in Column (3) indicates that restrictive zoning increases home sales prices:

𝛽𝑀𝐿𝑆 = 0.1347, with p-value < 0.01. That is, doubling MLS would increase the sales price of a

home by about 10 percent. The full specification result in Column (3) indicates that restrictive

zoning increases home sales prices: 𝛽𝑀𝐿𝑆 = 0.0881, with p-value < 0.01. That is, doubling MLS

would increase the rent of a home by about 6 percent.

3.4 Price Effect Mechanisms

As discussed in the previous subsection, the baseline coefficient estimates reflect the overall price

effects, including the direct effect and neighborhood effect. I further investigate the baseline

price effect estimates by the mechanisms. To do so, I run border discontinuity regressions in

Equation 1 with building-level characteristics as additional control variables. In discussing the

results, I consider minimum lot size as a proxy for the overall stringency of zoning, including

restrictions on other building dimensions, such as floor-area-ratio and height. Alternatively,

one may say that minimum lot size regulations only shift the lot size while they do not affect

other building characteristics. An alternative interpretation based on this assumption can be

found in Appendix Table A6 where I consider building-level characteristics other than lot size as

additional control variables instead of endogenous variables.20

Table 6 reports the regression results with price effect mechanisms. 𝛽𝑀𝐿𝑆 , the price effect

coefficient for the sales price, controlling for observable building-level characteristics in Column

(2) is 0.0220, decreased from 0.1382 in the baseline specification. Note that Column (2) controls

for building square feet, age, number of bedrooms, and number of bathrooms in addition to lot

size, which is directly affected by minimum lot size regulations. About 84 percent of the overall

price effect of zoning is caused by shifting building characteristics, which is the direct effect.

Similarly, 66 percent of the overall rent effect may be attributed to the direct effect.

Appendix Figure A2 illustrates how each of the building characteristics is affected by mini-

20. Other building characteristics than lot size may be affected by minimum lot size regulations due to preferences
of homeowners and builders. For example, homeowners and builders may prefer larger square footage in a larger
lot. As such, if building characteristics interact with lot size in their utility function, a regulation on lot size affects
overall building dimensions. In this case, this alternative interpretation is not valid, and my baseline interpretation
is preferable.
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mum lot sizes. Stricter (larger) minimum lot sizes increase lot size, square footage, # of bedrooms,

and # of bathrooms. This may be due to correlated zoning laws of other types, such as maximum

floor-area-ratio or setback requirements, but also due to market preference. Homeowners and

builders may prefer having larger square footage and more rooms when the lot is larger. Stricter

minimum lot sizes increase building ages as well, indicating that new construction is more

limited when zoning is stricter. Overall, these shifts in building characteristics by zoning laws

account for the majority of their price and rent effects.

The remaining effect of zoning laws on sales prices, which I consider as the neighborhood

effect, is 0.0220 in Column (2), and the remaining effect on rents is 0.0302 in Column (4). These

neighborhood effects are attributed to neighborhood environments shaped by stringent zoning

that are capitalized in, including the following examples. First, low-density neighborhoods may

generate a quieter and more livable ambiance of the neighborhood. Second, higher property

values of neighboring homes increase local property tax collection, thus increasing housing

prices in the neighborhood. Third, the neighborhood effect on sales prices reflects the insurance

value of zoning; stringent zoning may insure against negative changes in the neighborhood,

protecting property values in the future. Finally, It is worth mentioning that I cannot rule out

potential biases from unobserved building quality correlated with MLS in 𝛽𝑀𝐿𝑆 . For example, if

homes in large MLS neighborhoods tend to have luxury interiors, it would be captured in the

neighborhood effect estimates.

The magnitude of estimated neighborhood effects of stringent zoning is fairly small. For

example, if neighborhood zoning is twice as stringent with building characteristics fixed, the

home price would be 1.5 percent higher, and rent would be 2 percent higher. Yet, the positively

estimated neighborhood price effect of stringent zoning implies that existing homeowners have

an economic incentive to make zoning more restrictive. When neighborhood zoning becomes

more stringent, existing properties are grandfathered in, and their building characteristics do

not have to change. Even then, existing homeowners enjoy the neighborhood price premium of

stringent zoning through the neighborhood effect.

Figure 4 illustrates how the overall and neighborhood effect estimates of zoning on sales price

and rent vary by distance to municipality borders. The top panel indicates that both direct effects
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and neighborhood effects on sales prices increase as the border region is defined further away

from municipality borderlines. Increasing direct effects indicate that zoning regulations are more

binding closer to the municipality centers, affecting building characteristics more substantially

and thus increasing housing prices. Furthermore, neighborhood effects of zoning increase as the

border distance increases. This may be because neighborhood amenities from low-density are

maximized when the property is surrounded by larger similar-density environments instead of

being right off the border. The subplot on the rent effect in the bottom panel shows a similar

trend, especially for the direct effect, although the estimates are much noisier due to the smaller

sample size.

3.5 Effects on Residential Sorting

In this section, I examine whether zoning laws induce demographic sorting. To do so, I repeat

the border analysis with Equation 1 with homeowner race and income from HMDA data as

outcome variables. Table 7 reports the 𝛽𝑀𝐿𝑆 estimates for homeowner race and income. In

the baseline specifications in Columns (2) and (5), I find that more restrictive zoning (larger

minimum lot sizes) increases non-Hispanic white homeowners and higher-income homeowners

in the neighborhood. For example, when the minimum lot size is doubled, the probability of non-

Hispanic white homeowners increases by 2.3 percent points, and homeowner income increases

by 9.5 percent. These estimates are robust to the inclusion of municipality-by-school district fixed

effects in Columns (3) and (6). That is, zoning regulations explain not only across-municipality

segregation but also within-municipality segregation.

Demographic sorting with respect to zoning restrictiveness is important in understanding

exclusionary zoning. Exclusionary zoning is a discriminatory practice in which communities

impose restrictive zoning laws in order to exclude racial minorities and low-income households.

My analysis of demographic sorting due to zoning restrictiveness finds that stringent zoning

disproportionately attracts white and high-income homeowners. That is, zoning laws may have

been used for implicit exclusion of racial minorities and low-income households.
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4 Conclusion

Residential zoning has been accused of limiting housing supply and contributing to the housing

affordability crisis. The empirical literature on zoning laws has been growing rapidly, but limited

geographic coverage of existing zoning data is still a major challenge in the literature. In this

paper, I build a nationwide dataset on minimum lot size regulations and study its impact on

housing markets. I find that minimum lot size restrictions play significant roles in increasing

housing prices, primarily by shifting the building characteristics. I also find that the regulations

intensify segregation by disproportionately attract high-income white homeowners.

My analysis begins with constructing a nationwide dataset of neighborhood-level minimum

lot size estimates. I propose a new approach to estimate dimensional requirements by detecting

structural breaks in observed property characteristics in property tax records. I apply a structural

break detection algorithm to estimate minimum lot sizes across the nation and build a dataset

on zoning district-level minimum lot size estimates with substantially broader coverage than

existing zoning datasets. This dataset allows me to conduct the first nationwide examination of

minimum lot size regulations.

I leverage a spatial discontinuity design in the stringency of minimum lot size restrictions

at municipal borders to estimate their effects on housing markets. Adopting the spatial dis-

continuity design helps address the endogeneity of zoning. I additionally control for location

characteristics in 1940 that may be related to the stringency of zoning. I find that a larger mini-

mum lot size increases both sales prices and rents. For example, doubling minimum lot sizes

would increase home sales prices by 10 percent and rents by 6 percent. I also find that zoning

laws intensify residential segregation; neighborhoods with restrictive zoning disproportion-

ately attract high-income white homeowners due to the lack of affordable housing options and

heterogeneous preference for neighborhood amenities shaped by zoning.

Zoning laws have come under scrutiny globally as many places face housing affordability

problems. As zoning laws define the minimum requirements of housing construction, restrictive

zoning removes affordable housing options and increases housing prices. This paper contributes

to measuring the stringency of zoning in neighborhoods across the U.S. and quantifying its
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impact in the housing markets. This research provides guidance for zoning reforms, which are

actively being discussed in the U.S. and other countries, and opens up the possibility of future

empirical research on residential zoning.
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Figure 1 — Kink at Minimum Lot Sizes (MLS) in MAPC Zoning Atlas
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Note. The figure depicts the distribution of deviation from minimum lot size, defined as lot size−𝑀𝐿𝑆
𝑀𝐿𝑆

, of
single-family homes built after 1940 (top: histogram with 100 bins, bottom: empirical distribution
function). The underlying data is from CoreLogic tax data merged with MAPC Zoning Atlas, including
656,695 single-family home construction in 769 zoning districts with minimum lot sizes ranging from
1,500 square feet to 4 acres (median = 20,000 sqft).
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Figure 2 — Minimum Lot Size Detection from the Distribution of Constructed Lot Sizes
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Note. The figure depicts the distribution of lot sizes of single-family homes built after 1940 in four
example zoning districts. For each district, actual minimum lot sizes are denoted by purple solid lines,
and estimated minimum lot sizes are denoted by dashed green lines. In Chaplin, the actual minimum lot
size is 2 acres municipality-wide. In Darien, which is comprised of three districts, districts #1–#3
respectively have 1/2-acre, 1-acre, and 2-acre minimum lot sizes. The estimated minimum lot sizes are
constructed by detecting structural breaks in the lot size distribution.
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Table 1 — Validation of Estimated Minimum Lot Sizes Using MAPC Zoning Atlas Data

Decile 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

0.45 % 0.58 % 1.00 % 6.67 % 11.7 % 28.0 % 49.8 % 50.0 % 67.3 %

Note. This table reports the error in estimated minimum lot sizes (estimated MLS) when it is compared
to actual minimum lot size regulations (actual MLS) found in MAPC Zoning Atlas. It reports the deciles
of error rate (in %) in estimated MLS, defined as = estimated MLS - actual MLS

actual MLS . The data is restricted to single-
family homes subject to minimum lot size regulations in MAPC, excluding outliers with minimum lot
sizes larger than or equal to 5 acres.

Table 2 — Minimum Lot Size Simple Proxies Compared to MAPC Zoning Atlas Data

A. Error rate in MLS, when proxied by 1st percentile constructed lot sizes

Decile 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

50.1 % 55.9 % 61.6 % 68.0 % 73.8 % 75.5 % 77.6 % 82.1 % 86.4 %

B. Error rate for in MLS, when proxied by 10th percentile constructed lot sizes

Decile 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

14.3 % 32.0 % 33.3 % 42.1 % 45.6 % 53.5 % 58.9 % 66.2 % 74.0 %

Note. This table reports the deciles of error rate (in %) in other possible minimum lot size proxies, defined
as = estimated MLS - actual MLS

actual MLS , when it is compared to actual minimum lot size regulations (actual MLS)
found in MAPC Zoning Atlas, excluding outliers with minimum lot sizes larger than or equal to 5 acres.
The data is restricted to single-family homes subject to minimum lot size regulations (actual MLS > 0).
Panel A uses the 1st percentile of single-family lot sizes in each proxy zoning district, constructed since
1940, as proxies for minimum lot sizes. Panel B uses the 10th percentile of single-family lot sizes in each
proxy zoning district, constructed since 1940, as proxies for minimum lot sizes.
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Table 3 — Wharton Index Compared to MAPC Zoning Atlas Data

% municipalities by reporting error

Wharton DRI # municipalities Correctly Under Over

No larger than 0.5 acres 6 50% 50% .

0.5 – 1 acres 11 54.5% 9.1% 36.4%

1 – 2 acres 7 85.7% 14.3% 0%

More than 2 acres 6 33.3% . 66.7%

All parcels 30 56.7% 20% 23.3%

Note. The table reports the reporting errors in Wharton Density Restriction Index (DRI). To calculate
the reporting errors, Wharton DRI is compared to the largest minimum lot size in MAPC Zoning Atlas,
restricted to residential districts while excluding planned development zones, in each municipality.
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Figure 3 — Stringency and Restrictiveness of Zoning by State
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Note. The figure depicts the stringency of zoning (x-axis), measured by the median min lot sizes, and the
restrictiveness of zoning (y-axis), measured by bunching rate at the min lot sizes, by state.
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Table 4 — Sample description (border distance = 0.5 km)

A. Deed sample statistics (within 0.5km of borders)

# obs. 10,598,492

# parcels 5,788,051

# borders 10,315

Variable Q1 Q2 (Median) Q3 Mean SD

Sales price (in $1000s) 112 183 295 242 225

Min lot size (in sqft) 7,002 8,999 13,068 13,580 18,225

Lot size (in sqft) 6,400 8,834 13,995 27,955 1,954,375

Building footage (in sqft) 1,300 1,695 2,288 1,905 1,690

(Effective) Year built 1966 1990 2002 1982 26

# Bedrooms 3 3 4 3.25 0.81

# Bathrooms 2 2 3 2.31 0.93

B. Deed+HMDA sample statistics (within 0.5km of borders)

# obs. 4,662,670

# parcels 3,457,169

# borders 9,594

Variable Q1 Q2 (Median) Q3 Mean SD

Sales price (in $1000s) 138 206 320 268 219

Min lot size (in sqft) 7,000 8,712 12,600 13,091 17,505

1 (Non-Hispanic white) 0.689

1 (Asian Pacific) 0.059

1 (Black) 0.061

1 (Hispanic) 0.096

Income (in $1000s) 49 74 113 100 794

C. MLS rental listing sample statistics (within 0.5km of borders)

# obs. 300,305

# parcels 167,597

# borders 3,023

Variable Q1 Q2 (Median) Q3 Mean SD

Monthly Rent (in $) 1,175 1,479 2,045 5,008 22,587

Min lot size (in sqft) 6,787 8,250 10,720 11,105 12,644

Lot size (in sqft) 5,976 7,500 10,290 25,661 2,549,502

Building footage (in sqft) 1,420 1,820 2,371 1,984 816

Year built 1979 1997 2005 1990 20

# Bedrooms 3 3 4 3.32 0.78

# Bathrooms 2 2 3 2.37 0.84

Note. This table reports sample statistics. Panel A describes the sales price data from CoreLogic deed
data. Panel B describes the homeowner demographics data from CoreLogic deed data merged with
Home Mortgage Disclosure Act data. Panel C describes the rental listing data from CoreLogic Multiple
Listings Services. All samples are restricted to single-family homes within 0.5km of municipal borders
with minimum lot size estimates.

27



Table 5 — Baseline Price Effect Estimates in Municipal Border Analysis

Dependent Variable: log sales price log rent

Model: (1) (2) (3) (4) (5) (6) (7) (8)

log MLS 0.2092∗∗∗ 0.2226∗∗∗ 0.1510∗∗∗ 0.1382∗∗∗ 0.1413∗∗∗ 0.1453∗∗∗ 0.1028∗∗∗ 0.0884∗∗∗

(0.0095) (0.0095) (0.0081) (0.0092) (0.0146) (0.0135) (0.0122) (0.0096)

Controls

county × year FE Yes Yes Yes Yes Yes Yes Yes Yes

1940 IPUMS Yes Yes Yes Yes Yes Yes

border FE Yes Yes Yes Yes

loc gov’t × SD FE Yes Yes

Observations 10,598,492 10,598,492 10,598,492 10,598,492 300,305 300,305 300,305 300,305

R2 0.38858 0.39130 0.48888 0.52182 0.70169 0.70330 0.75335 0.76417

Robust standard-errors in parentheses clustered at the municipality level

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note. This table reports baseline coefficient estimates of regression 1. The outcome variable in Columns
(1) to (4) is log sales price, and the outcome variable in Columns (5) to (8) is log rent. All columns include
county-by-transaction year fixed effects, and Columns (2) to (4) and (6) to (8) additionally include 1940
neighborhood characteristics as controls. Columns (3), (4), (7), and (8) implement the border discontinuity
design by including border fixed effects. Finally, Columns (4) and (8) also include municipality (city, town,
township, or county for unincorporated places)-by-school district fixed effects.

28



Table 6 — Price Regressions with Building Characteristics Controlled

Dependent Variable: log sales price

log rent

Model: (1) (2) (3) (4)

log MLS 0.1382∗∗∗ 0.0220∗∗∗ 0.0884∗∗∗ 0.0302∗∗∗

(0.0092) (0.0042) (0.0096) (0.0061)

Building characteristics

log lot size 0.0803∗∗∗ 0.0271∗∗∗

(0.0029) (0.0040)

log bldg. sqft. 0.6222∗∗∗ 0.4750∗∗∗

(0.0081) (0.0105)

age -0.0051∗∗∗ -0.0022∗∗∗

(0.0001) (0.0002)

# bed -0.0151∗∗∗ -0.0028

(0.0016) (0.0025)

# bath 0.0687∗∗∗ 0.0347∗∗∗

(0.0018) (0.0029)

Controls

Full Controls and FEs Yes Yes Yes Yes

Observations 10,598,492 10,598,492 300,305 300,305

R2 0.52182 0.61884 0.76417 0.81092

Robust standard-errors in parentheses clustered at the municipality level

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note. This table reports coefficient estimates of regression 1 with building-level controls. The outcome
variable in Columns (1) and (2) is log sales price, and the outcome variable in Columns (3) and (4) is log
rent. All columns include county-by-transaction year fixed effects, 1940 neighborhood characteristics,
border fixed effects, and municipality-by-school-district fixed effects. Columns (2) and (3) additionally
include transaction-level building characteristics.

29



Figure 4 — Price effects by border regions
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Note. The figure depicts the coefficient estimates (dots) and 95% confidence intervals (lines) of 𝛽𝑀𝐿𝑆 for
sales prices (top panel) and rents (bottom panel) by border regions (x-axis). Each panel shows 10 border
regions: [0,0.1km], [0.1,0.2km], [0.2,0.3km], [0.3,0.4km], [0.4,0.5km], [0.5,0.6km], [0.6,0.7km], [0.7,0.8km],
[0.8,0.9km], [0.9,1km]. For each outcome variable and border region, the total price/rent effects are
depicted in purple dot and solid line, and the remaining effects after controlling for building level
characteristics are in green dot and dashed line. All specifications include county-by-transaction year
fixed effects, 1940 neighborhood characteristics, and border fixed effects.
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Table 7 — Homeowner Demographic sorting

Dependent Variables: 1(race = non-Hispanic white) log income

Model: (1) (2) (3) (4) (5) (6)

Variables

log MLS 0.0532∗∗∗ 0.0334∗∗∗ 0.0304∗∗∗ 0.1671∗∗∗ 0.1314∗∗∗ 0.1217∗∗∗

(0.0027) (0.0024) (0.0029) (0.0057) (0.0047) (0.0058)

Controls

county × year FE Yes Yes Yes Yes Yes Yes

1940 IPUMS Yes Yes Yes Yes

border FE Yes Yes Yes Yes

loc gov’t × SD FE Yes Yes

Fit statistics

Observations 4,662,670 4,662,670 4,662,670 4,662,670 4,662,670 4,662,670

R2 0.13266 0.18778 0.19690 0.21095 0.31306 0.33482

Robust standard-errors in parentheses clustered at the municipality level

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note. This table reports baseline coefficient estimates of regression 1 with homeowner race and income
from HMDA data as outcome variables. The outcome variable in Columns (1) to (3) is the indicator
variable of whether the homeowner is non-Hispanic white, and the outcome variable in Columns (4) to (6)
is log homeowner income. All columns include county-by-transaction year fixed effects, and Columns (2),
(3), (5), and (6) additionally include 1940 neighborhood characteristics as controls and border fixed effects.
Finally, Columns (3) and (6) also include municipality (city, town, township, or county for unincorporated
places)-by-school district fixed effects.
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Appendix A Figures and Tables

Table A1 — Municipality definition by state

Description 2010 Census count # identified

AL All incorporated places (167 cities, 293 towns) 460 461

AR All incorporated places (311 cities, 191 towns) 502 501

AZ All incorporated places (45 cities, 45 towns) 90 91

CA All incorporated places (459 cities, 21 towns) 480 482

CO All incorporated places (75 cities, 196 towns) 271 271

CT All county subdivisions (169 towns) 169 169

DE All incorporated places (10 cities, 44 towns, 3 villages) 57 57

DC District of Columbia (1 city) 1 1

FL All incorporated places (268 cities, 124 towns, 19
villages)

411 412

GA All incorporated places (425 cities, 105 towns, 2
balances)

535 536

ID All incorporated places (201 cities). Lost River city is
inactive and not included in the data

201 200

IL 1 incorporated place independent of any township
(Chicago). 12 incorporated places in counties where
county subdivisions are nonfunctioning election
precincts. 1432 functioning Census county subdivisions
(townships) excluding the 13 incorporated places

1445 1444

IN 2 incorporated places independent of any county
subdivisions (Indianapolis, Terra Haute). 1009 county
subdivisions that are not undefined or unorganized
territories excluding Indianapolis and Terra Haute cities
(1005 townships, 3 towns, 1 cities)

1011 1008

IA County subdivisions excluding unorganized territories
(1598 townships, 59 cities that are either wholly or
partially independent of MCDs that create 62 CCDs)

1660 1661

KS All county subdivisions (1403 townships while 129 of
them are inactive, 120 cities creating 127 MCDs)

1530 1530

KY All incorporated places (420 cities, 1 urban county, 1
balance)

422 417

LA All incorporated places (69 cities, 128 towns, 107
villages)

304 304

ME County subdivisions that are not plantations, gore,
American Indian reservations, or unorganized
territories (433 towns, 22 incorporated places)

455 453

MD All incorporated places (29 cities, 123 towns, 5 villages) 157 157

MA 53 incorporated places independent of MCDs. 298
county subdivisions that are towns

351 349

MI County subdivisions that are not undefined MCDs (1123
townships, 117 charter townships, 275 incorporated
places that are cities creating 293 MCDs)

1533 1540
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Description 2010 Census count # identified

MN County subdivisions that are not unorganized territories
or undefined MCDs excluding 23 nonfunctioning
townships in Lake of the Woods County (1785 active
townships, 845 incorporated places creating 893 MCDs)

2678 2672

MS All incorporated places (110 cities, 169 towns, 19
villages)

298 298

MO 331 active townships, 959 incorporated places (637
cities, 110 towns, 212 villages while 8 of the
incorporated places are inactive) that are not
dependent on 331 active townships

1087 1087

MT All incorporated places (52 cities, 75 towns, 1 city with
no description, 1 balance)

129 129

NE County subdivisions that are not election precincts or
election districts (435 active townships, 77 incorporated
places that are independent of MCDs creating 79 CCDs)

512 501

NV All incorporated places (18 cities, 1 place with no legal
descriptor)

19 19

NH County subdivisions that are not townships, locations,
purchases, grants, or undefined, excluding Livermore
town (inactive). 13 incorporated places that are
independent

234 234

NJ County subdivisions that are not undefined MCDs (242
townships, 324 incorporated places that are
independent of MCDs comprised of 254 boroughs, 52
cities, 3 towns, and 3 villages)

566 563

NM All incorporated places (35 cities, 19 towns, 48 villages) 102 105

NY County subdivisions that are not boroughs, American
Indian reservations, or undefined MCDs (932 towns, 61
cities creating 62 MCDs)

994 994

NC All incorporated places (76 cities, 456 towns, 21 villages) 553 552

ND County subdivisions that are not unorganized territories
(1317 townships, 357 incorporated places that are
independent of MCDs creating 364 CCDs)

1681 1673

OH County subdivisions that are not undefined MCDs (1324
townships, 258 incorporated places that are wholly or
partially independent creating 274 CCDs)

1598 1601

OK All incorporated places (164 cities, 433 towns while four
are inactive)

597 590

OR All incorporated places (233 cities, 9 towns while 1 city
is inactive)

242 240

PA County subdivisions that are not undefined MCD (1547
townships while 1 of them is inactive, 1015 incorporated
places creating 1027 CCDs)

2574 2572

RI County subdivisions that are not undefined MCDs (31
towns, 8 incorporated cities independent of MCDs)

39 39

SC All incorporated places (69 cities, 200 towns) 269 270

SD County subdivisions that are not unorganized territories
(915 townships, 311 independent incorporated places
creating 320 CCDs)

1234 1222
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Description 2010 Census count # identified

TN All incorporated places (182 cities, 162 towns, 1
metropolitan government, 1 with no descriptor, 1
balance)

347 345

TX All incorporated places (956 cities, 234 towns, 24 villages
while 2 places are inactive)

1214 1218

UT All incorporated places (144 cities, 101 towns) 245 250

VT County subdivisions that are not gores or grants (237
towns actively functioning, 9 cities independent of
MCDs)

246 251

VA All incorporated places (39 cities, 190 towns) 229 228

WA All incorporated places (208 cities, 73 towns) 281 281

WV All incorporated places (77 cities, 148 towns, 6 villages, 1
corporation)

232 232

WI County subdivisions that are not undefined MCDs (1257
towns, 594 incorporated places that are independent of
MCDs creating 651 CCDs)

1908 1911

WY All incorporated places (19 cities, 80 towns) 99 99

Total 32252 32232

Note. This table presents types of municipalities by state with local government entities according to the
2010 Census Guide to State and Local Census Geography. Note that the counts of municipalities include
both municipalities in Core-Based Statistical Areas and those not part to any Core-Based Statistical Areas.
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Table A2 — Summary statistics of min lot size estimates (weighted by # home)

Percentile

5th 25th 50th 75th 95th Mean

Nationwide 4, 726 7, 080 9, 200 14, 810 43, 996 15, 971
AL 7, 000 12, 323 15, 515 20, 308 43, 560 18, 383
AZ 5, 227 7, 209 7, 989 9, 148 35, 223 10, 947
AR 7, 000 9, 448 13, 000 15, 246 30, 056 16, 158
CA 4, 750 6, 098 7, 080 7, 980 12, 850 7, 830
CO 5, 750 7, 000 8, 015 10, 000 22, 216 10, 680
CT 6, 534 11, 326 21, 344 43, 996 87, 991 33, 000
DE 3, 485 4, 356 7, 405 10, 019 15, 682 8, 018
DC 3, 081 3, 081 3, 563 5, 000 5, 058 4, 056
FL 4, 356 7, 000 9, 213 10, 019 16, 117 10, 197
GA 4, 879 8, 712 11, 361 17, 999 43, 560 16, 508
ID 6, 970 8, 028 9, 365 10, 585 24, 394 12, 197
IL 3, 750 6, 600 9, 225 11, 325 43, 560 13, 190
IN 6, 534 9, 757 14, 400 25, 920 87, 120 27, 588
IA 6, 820 7, 841 9, 525 11, 996 64, 033 18, 210
KS 6, 600 7, 920 9, 200 14, 000 92, 347 19, 903
KY 5, 400 8, 276 10, 625 13, 939 25, 395 12, 868
LA 6, 000 6, 000 9, 000 15, 000 43, 560 13, 639
ME 6, 300 10, 019 22, 651 80, 150 130, 680 43, 461
MD 1, 120 1, 938 5, 000 7, 840 14, 000 5, 921
MA 7, 000 11, 543 20, 038 40, 075 80, 436 26, 823
MI 5, 227 5, 445 7, 405 13, 939 44, 867 15, 952
MN 5, 663 9, 583 11, 326 16, 510 113, 256 27, 307
MS 8, 031 11, 175 13, 939 15, 000 22, 512 14, 495
MO 4, 650 8, 712 10, 019 12, 589 22, 651 13, 966
MT 6, 011 7, 405 8, 102 10, 759 14, 810 10, 051
NE 6, 350 6, 500 9, 000 12, 197 39, 600 12, 690
NV 4, 792 6, 098 6, 534 7, 405 12, 197 7, 373
NH 7, 500 16, 117 43, 560 87, 120 133, 294 52, 873
NJ 2, 500 5, 001 8, 760 15, 002 44, 997 14, 998
NM 7, 492 8, 503 8, 503 9, 200 12, 197 10, 956
NY 5, 001 7, 500 13, 463 32, 942 91, 912 27, 978
NC 5, 875 10, 019 14, 810 20, 038 43, 560 16, 770
ND 5, 880 7, 452 8, 800 11, 326 67, 082 16, 834
OH 5, 279 7, 500 11, 199 20, 038 75, 359 21, 104
OK 6, 998 7, 919 8, 400 11, 761 43, 560 13, 785
OR 4, 792 6, 534 7, 600 9, 575 12, 197 9, 311
PA 2, 913 5, 932 10, 560 21, 780 50, 530 18, 527
RI 5, 000 7, 518 11, 250 20, 909 87, 991 24, 644
SC 6, 875 11, 500 15, 246 21, 780 43, 560 19, 221
SD 7, 766 9, 240 9, 274 16, 000 87, 120 23, 857
TN 7, 405 10, 000 15, 000 22, 500 43, 560 19, 607
TX 6, 025 7, 250 8, 588 9, 620 20, 400 10, 607
UT 6, 534 8, 276 9, 148 11, 326 21, 780 11, 682
VT 9, 386 14, 810 22, 216 43, 560 100, 188 37, 232
VA 3, 920 6, 970 10, 400 15, 207 26, 250 12, 905
WA 5, 000 6, 400 7, 841 10, 019 16, 553 9, 648
WV 5, 702 7, 501 8, 337 11, 931 21, 653 10, 798
WI 4, 800 7, 105 9, 300 11, 761 23, 958 10, 987
WY 6, 250 7, 500 8, 470 9, 525 13, 504 11, 778

Note. This table reports the nationwide and statewide summary statistics of estimated minimum lot sizes.
The 5th, 25h, 50th, 75th, and 95th percentiles and the average of minimum lot sizes are computed by
weighting by the number of homes in each geographic area.
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Table A3 — Summary statistics of min lot size estimates (weighted by land area)

Percentile

5th 25th 50th 75th 95th Mean

Nationwide 2, 499 8, 985 18, 730 43, 556 173, 804 38, 194
AL 7, 722 7, 909 11, 871 18, 644 43, 348 15, 787
AZ 6, 499 8, 177 8, 253 9, 142 49, 397 16, 334
AR 6, 970 11, 141 13, 500 21, 218 62, 291 23, 104
CA 4, 999 6, 999 7, 797 8, 996 18, 974 9, 927
CO 5, 992 7, 188 8, 400 10, 865 42, 689 14, 841
CT 11, 325 40, 055 47, 406 86, 970 124, 146 60, 913
DE 3, 920 7, 405 9, 461 15, 000 25, 800 12, 036
DC 3, 076 3, 450 4, 880 4, 880 7, 500 4, 810
FL 6, 050 7, 590 8, 494 10, 018 49, 085 14, 242
GA 6, 965 11, 308 17, 982 37, 026 84, 942 29, 371
ID 6, 900 8, 250 11, 282 26, 136 43, 124 21, 654
IL 7, 300 11, 248 12, 726 39, 650 209, 524 37, 888
IN 11, 195 27, 748 27, 748 43, 516 217, 364 48, 353
IA 7, 564 11, 587 43, 521 90, 169 203, 861 63, 255
KS 7, 256 7, 388 12, 196 125, 453 216, 929 60, 782
KY 7, 405 10, 200 15, 000 41, 617 51, 662 23, 996
LA 8, 050 14, 999 15, 920 15, 920 40, 647 18, 731
ME 10, 001 43, 485 80, 150 87, 991 169, 448 72, 497
MD 1, 062 7, 000 8, 637 13, 621 31, 554 12, 982
MA 10, 299 22, 215 43, 486 65, 776 119, 790 49, 391
MI 5, 968 14, 723 18, 252 43, 124 131, 116 39, 314
MN 8, 880 16, 995 52, 272 158, 994 217, 606 91, 317
MS 1, 383 11, 175 13, 978 17, 954 40, 946 17, 845
MO 7, 500 10, 200 14, 767 42, 253 217, 364 49, 806
MT 6, 000 7, 405 9, 375 14, 767 76, 230 25, 675
NE 6, 992 6, 992 6, 992 11, 625 95, 396 21, 661
NV 5, 184 6, 094 6, 926 9, 000 22, 564 9, 926
NH 16, 976 45, 738 86, 249 111, 514 202, 423 87, 311
NJ 2, 375 2, 479 2, 479 10, 000 43, 500 10, 611
NM 8, 260 8, 500 8, 500 10, 649 41, 382 13, 785
NY 10, 888 30, 272 43, 520 86, 267 217, 364 72, 528
NC 7, 362 11, 662 15, 225 21, 301 43, 345 19, 285
ND 7, 405 10, 498 27, 520 67, 082 129, 809 52, 607
OH 7, 473 14, 280 26, 400 54, 363 215, 700 52, 354
OK 6, 999 8, 399 12, 276 43, 556 110, 400 32, 121
OR 3, 710 4, 732 7, 009 10, 010 32, 234 14, 568
PA 7, 802 19, 977 43, 386 48, 047 87, 102 42, 842
RI 8, 000 20, 000 43, 124 87, 556 206, 910 66, 445
SC 9, 017 13, 050 13, 996 29, 575 97, 574 26, 842
SD 10, 500 17, 298 17, 298 42, 042 118, 919 37, 163
TN 7, 492 13, 050 18, 750 43, 124 48, 352 25, 867
TX 6, 761 7, 800 9, 374 21, 632 32, 539 14, 516
UT 7, 100 8, 668 11, 500 21, 344 45, 302 21, 417
VT 14, 375 39, 204 45, 738 81, 457 113, 256 63, 354
VA 5, 745 10, 367 15, 207 18, 121 130, 800 25, 606
WA 2, 731 6, 395 8, 401 10, 414 32, 234 12, 236
WV 5, 998 8, 276 10, 000 11, 927 22, 198 11, 970
WI 6, 938 9, 120 12, 592 18, 644 33, 977 18, 333
WY 6, 098 7, 960 8, 550 11, 995 108, 900 20, 025

Note. This table reports the nationwide and statewide summary statistics of estimated minimum lot sizes.
The 5th, 25h, 50th, 75th, and 95th percentiles and the average of minimum lot sizes are computed by
weighting by land area in each geographic area.
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Table A4 — Full list of control variables and their data sources

Variable Description Source

Parcel characteristics
Lot area Corelogic Tax Assessor

Building square footage Corelogic Tax Assessor

(Effective) Construction year Corelogic Tax Assessor

# Bedrooms Corelogic Tax Assessor

# Bathrooms Corelogic Tax Assessor

Neighborhood characteristics (municipality-level & municipality × border region-level)
1940 Total population Full-Count 1940 Census

1940 Average household size Full-Count 1940 Census

1940 Mean household wage Full-Count 1940 Census

1940 % white Full-Count 1940 Census

1940 % Homeownership Full-Count 1940 Census

1940 Mean home value Full-Count 1940 Census

1940 Mean rent Full-Count 1940 Census

Note. This table reports the control variables used in Section 3. For the variables with missing values, I
include an additional dummy variable for missing data and replace missing values with value -99 in the
original variable. Lot area, building square footage, population, and mean household wage are entered
log-linearly in the specifications. All other variables enter linearly in the specifications.
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Figure A1 — Binscatter Plots (Full Controls With Border Distance = 0.5 km)
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Note. The figure depicts the binscatter plots with 20 bins from two. The x-axis is minimum lot size (in
square feet). The y-axis is sales price (in 1000 dollars), rental price (in dollars), indicator for homeowner
being white, and homeowner income (in 1000 dollars), respectively. All regressions include 1940 IPUMS
control variables, border region fixed effects, county-by-transaction year fixed effects, and
municipality-by-school district fixed effects. Minimum lot size, prices, and homeowner income are
transformed on a logarithmic scale in binscatter regressions.
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Table A5 — Price Regressions without Municipality × School District Fixed Effects

Dependent Variable: log sales price log rent

Model: (1) (2) (3) (4) (5) (6) (7) (8)

log MLS 0.1510∗∗∗ 0.0707∗∗∗ 0.0259∗∗∗ 0.0166∗∗∗ 0.1028∗∗∗ 0.0514∗∗∗ 0.0391∗∗∗ 0.0327∗∗∗

(0.0081) (0.0054) (0.0042) (0.0034) (0.0122) (0.0060) (0.0063) (0.0064)

Building characteristics

log bldg. sqft. 0.6890∗∗∗ 0.6383∗∗∗ 0.6383∗∗∗ 0.4993∗∗∗ 0.4887∗∗∗ 0.4862∗∗∗

(0.0085) (0.0084) (0.0083) (0.0116) (0.0116) (0.0117)

age -0.0048∗∗∗ -0.0053∗∗∗ -0.0053∗∗∗ -0.0020∗∗∗ -0.0022∗∗∗ -0.0022∗∗∗

(0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002)

# bed -0.0171∗∗∗ -0.0183∗∗∗ -0.0175∗∗∗ -0.0038 -0.0038 -0.0033

(0.0018) (0.0018) (0.0018) (0.0025) (0.0025) (0.0025)

# bath 0.0708∗∗∗ 0.0742∗∗∗ 0.0723∗∗∗ 0.0366∗∗∗ 0.0374∗∗∗ 0.0361∗∗∗

(0.0022) (0.0021) (0.0020) (0.0029) (0.0029) (0.0029)

log lot size 0.0796∗∗∗ 0.0793∗∗∗ 0.0230∗∗∗ 0.0228∗∗∗

(0.0030) (0.0029) (0.0032) (0.0032)

Neighborhood characteristics

HMDA % white 0.1489∗∗∗ 0.0128

(0.0349) (0.0287)

HMDA % black -0.1864∗∗∗ -0.0474

(0.0562) (0.0495)

HMDA Q1 income 0.0011 0.0025∗∗

(0.0007) (0.0011)

HMDA Q2 income 0.0012∗ -0.0020∗

(0.0007) (0.0010)

HMDA Q3 inome -0.0003 0.0008∗∗∗

(0.0002) (0.0003)

Controls

county × year FE Yes Yes Yes Yes Yes Yes Yes Yes

1940 IPUMS Yes Yes Yes Yes Yes Yes Yes Yes

border FE Yes Yes Yes Yes Yes Yes Yes Yes

loc gov’t × SD FE No No No No No No No No

Observations 10,598,492 10,598,492 10,598,492 10,434,177 300,305 300,305 300,305 300,249

R2 0.48888 0.59253 0.60311 0.61186 0.75335 0.80653 0.80674 0.80693

Within R2 -0.01122 0.19384 0.21478 0.23258 0.00961 0.22315 0.22398 0.22577

Robust standard-errors in parentheses clustered at the municipality level

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note. This table reports coefficient estimates of regression 1 with building-level and neighborhood-level
covariates. The outcome variable in Columns (1) to (4) is log sales price, and the outcome variable
in Columns (4) to (8) is log rent. All columns include county-by-transaction year fixed effects, 1940
neighborhood characteristics, and border fixed effects but not municipality-by-school-district fixed effects.
Columns (2)-(4) and (6)-(8) additionally include transaction-level building characteristics. Columns
(4) and (8) also include homeowner demographics from HMDA at the neighborhood level, defined as
municipality by border region.
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Table A6 — Price Regressions (Alternative Assumptions)

Dependent Variable: log sales price log rent

Model: (1) (2) (3) (4)

log MLS 0.0638∗∗∗ 0.0220∗∗∗ 0.0884∗∗∗ 0.0302∗∗∗

(0.0047) (0.0042) (0.0057) (0.0061)

Building characteristics

log bldg. sqft. 0.6725∗∗∗ 0.6222∗∗∗ 0.4875∗∗∗ 0.4750∗∗∗

(0.0079) (0.0081) (0.0108) (0.0105)

age -0.0047∗∗∗ -0.0051∗∗∗ -0.0020∗∗∗ -0.0022∗∗∗

(0.0001) (0.0001) (0.0002) (0.0002)

# bed -0.0138∗∗∗ -0.0151∗∗∗ -0.0027 -0.0028

(0.0017) (0.0016) (0.0025) (0.0025)

# bath 0.0655∗∗∗ 0.0687∗∗∗ 0.0338∗∗∗ 0.0347∗∗∗

(0.0019) (0.0018) (0.0029) (0.0029)

log lot size 0.0803∗∗∗ 0.0271∗∗∗

(0.0029) (0.0040)

Controls

Full Controls and FEs Yes Yes Yes Yes

Observations 10,598,492 10,598,492 300,305 300,305

R2 0.61658 0.61884 0.81066 0.81092

Robust standard-errors in parentheses clustered at the municipality level

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note. This table reports coefficient estimates of regression 1 to understand price effect mechanisms under
an alternative assumption that minimum lot size regulations do not affect other building characteristics.
The outcome variable in Columns (1) and (2) is log sales price, and the outcome variable in Columns
(3) and (4) is log rent. All columns include county-by-transaction year fixed effects, 1940 neighborhood
characteristics, border fixed effects, and municipality-by-school-district fixed effects. The coefficient of
log MLS in Column (1) measures the total price effect, and its reduction in Column (2) measures the direct
effect. The coefficient of log MLS in Column (3) measures the total rent effect, and its reduction in Column
(4) measures the direct effect.
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Figure A2 — 𝛽𝑀𝐿𝑆 coefficients for building characteristics (Distance = 0.5 km)
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Note. The figure depicts the coefficient estimates and 95% confidence intervals of the regressions where
the outcome variables are building characteristics (y-axis), and the main explanatory variable is log min
lot size. Both panels include county-by-transaction year fixed effects, 1940 neighborhood characteristics,
and border fixed effects. The right panel additionally includes municipality-by-school-district fixed
effects. For each outcome variable in each panel, regression results using three sample data are shown:
sales data (purple), sales data restricted to counties with rent data in CoreLogic Multiple Listings Service
data (green), and rent data (yellow).
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